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Abstract
We study the transport of carriers in intrinsic graphene by means of an ensemble Monte Carlo
technique. Scattering by acoustic and optical phonons dominates the transport. We find that
velocity ‘saturation’ sets in at relatively low values of the electric field, but that the value is
dependent upon the carrier density. Velocity overshoot is also observed to occur in these
simulations.

(Some figures in this article are in colour only in the electronic version)

The behavior of energetic electrons in semiconductors has
been of interest since the first studies into the breakdown
and current saturation of these materials [1, 2]. Only strong
metals seem to maintain linear behavior to high electric
fields [3]. But, graphene is a strange metallic material,
with somewhat conflicting device characteristics. Graphene
is one of the remarkable discoveries made in the last century,
with serious interest arising in 2004 when A Geim and
his group were successfully able to extract graphene in its
two-dimensional form by mechanical exfoliation [4]. After
that, a great deal of theoretical and experimental interest
has been generated to investigate its rather unusual behavior
and for possible applications in future technology [5]. The
interest seems to originate from the astonishing difference
between graphene and other well known two-dimensional
semiconductor systems. In graphene, the atoms are arranged
into a honeycomb lattice and produce a unique bandstructure,
where the bands and electron transport are mainly influenced
by the linear energy bands near the Dirac point [6].

Although intense theoretical studies have focused upon
graphene’s transport [7–11], there apparently have been no
reports of high electric field behavior in graphene to date.
The possibility of graphene’s application in future nanoscale
devices greatly depends on its transport properties at high
electric field, and a comprehensive understanding of high field
transport is a must. Meric et al have observed current saturation
in graphene field-effect transistors as expected by electrostatic
depletion from the gate [12], whereas Lin et al, observe little
effect of the gate in similar transistors [13], the latter behavior
expected from the Klein paradox where electrons tunnel
through finite length barriers without reflection [14]. While
Meric et al considered the possibility of velocity saturation,

in fact little is presently known about this phenomenon in
graphene. On the other hand, it is known from ensemble Monte
Carlo studies, that velocity saturation does occur in carbon
nanotubes, the rolled up version of graphene [15]. In this
paper, we conduct a systematic study of velocity saturation in
graphene as a function of electron density and electric field.
Here, we use an ensemble Monte Carlo procedure to solve the
Boltzmann transport equation with the unique graphene band
structure. We find that the value of the saturation velocity is
a function of the electron density itself, with strong saturation,
and even negative differential conductance, being observed.

In this approach, an ensemble of particles is subjected
alternatively to acceleration in an applied electric field, and
scattering by the various phonons that are active in the
material [16]. An essential part of the process is treatment
of the density of states in the linear band and degeneracy that
occurs in graphene at reasonable densities. This degeneracy
is incorporated by a rejection process which accounts for
occupancy of the final state after scattering [17]. Then various
parameters such as average energy, distribution function, and
velocity are computed by taking an ensemble average over the
carriers involved in the transport. An ensemble of 105 particles
is used in this study. Usually, the value of mass is required
to determine drift velocity in any material. But graphene is
an extraordinary material whose band structure is governed by
the Dirac equation, in which charge carriers imitate relativistic
particles with zero rest mass. Away from the Dirac point, its
mass is found easily by relating the crystal momentum to the
particle momentum, which yields a result that is the same as
the cyclotron mass, and which therefore varies linearly with the
energy or momentum [18]. We then calculate the drift velocity
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Figure 1. (a) The experimental mobility for the case of K = 66,
taken from [20]. We plot two mobility curves for comparison, where
these are determined for two sets of coupling constants. These are
discussed in the text. (b) The velocity plotted as a function of the
electric field for these two sets of parameters used in panel (a), and a
density of 5 × 1012 cm−2.

in graphene from the relationship

vd =
〈

h̄ky

m∗

〉
=

〈
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h̄k/vF

〉
= vF

〈
ky

k

〉
, (1)

where the angular brackets denote the ensemble average

〈A〉 = 1

N

∑
i

Ai , (2)

and A is any parameter of interest. In (1), vF is the Fermi
velocity of the carriers in the linear Dirac band, k is the value of
the total momentum and ky is the wavevector along the electric
field.

Here, we are interested in the intrinsic, phonon limited
velocity behavior in graphene at room temperature. Most
studies of the transport at room temperature have involved
limited mobility due to the impact of impurities in the
SiO2 upon which the exfoliated graphene is deposited.

Figure 2. The steady state drift velocity is plotted as a function of
applied field for different carrier densities.

Recently, however, these layers have been immersed in various
polar liquids with relatively high dielectric constants, which
screened the impurity Coulomb interaction and resulted in high
mobilities at room temperature [19]. In this case, the liquid
apparently penetrates between the graphene and the oxide to
enhance the screening of the impurities in the oxide. Mobilities
above 40 000 cm2 V−1 s−1 were found. This has uncovered
what we believe to be the intrinsic mobility at various densities
and allowed us to determine the coupling constant for the
acoustic phonons and to estimate the coupling constant for the
optical phonons [20]. In studying the ‘intrinsic’ mobility in
graphene, Chen et al [21] considered acoustic modes of the
graphene phonons, but neglected the optical modes. Instead,
they assumed that remote interface modes [22], derived from
the polar interaction in SiO2, would be important. But, these
modes are known to not be very important, even in the Si/SiO2

case [23, 24]. Moreover, the interaction of these modes is
predominantly Coulombic in nature, and this will be screened
by the high dielectric constant materials. Instead, we consider
scattering by the non-polar optical phonons, arising from the
K point phonons, which couple the K and K ′ valleys of the
conduction band. From studies of the phonon structure, this is
the LA + LO mode with an energy of 150 meV [25]. Both the
long wavelength intra-valley optical mode and the zone edge
TA mode are forbidden by symmetry [26], and there is an out-
of-plane mode near the latter that can give rise to ripple modes
in second order [27]. In the rigid ion approximation, and with
a deformation field D0 and optical phonon frequency ω0, the
scattering rate becomes

1

τ
= D2

0

ρmω0(h̄vF)2
[(E − h̄ω0)(Nq + 1)u0(E − h̄ω0)

+ (E + h̄ω0)Nq ]. (3)

Here, ρm is the areal mass density of graphene, Nq is the Bose–
Einstein distribution for the phonons, and u0 is the Heaviside
function (u0 = 1 for the argument �0 and zero otherwise).
The other symbols have their normal meaning. The function
u0 assures that the energy is sufficient to emit a phonon. For
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Figure 3. (a) The average energy attained by the carriers as a
function of electric field. (b) This same energy normalized to the
equilibrium Fermi energy at that density.

acoustic phonons, the scattering rate derived by Hwang and
Das Sarma [28] for the equipartition limit (high temperature,
and corrected for an apparent typographical error) is given as

1

τ (E)
= 4D2kBT

h̄3ρm(vphvF)2
E(k). (4)

Here, D is the acoustic deformation potential, vph is the sound
velocity, and kB is Boltzmann’s constant. We include only
these scattering mechanisms in the calculation. In figure 1(a),
we plot the experimental mobility for the case of K = 66 (K is
the relative dielectric constant), taken from [20]. We plot two
mobility curves for comparison, where these are determined
for two sets of coupling constants. In one case, we use D =
14 eV for the acoustic modes and D0 = 4.1×109 eV cm−1 for
the optical mode. In the other, the coupling constants used are
D = 16.5 eV for the acoustic modes and D0 = 109 eV cm−1

for the optical mode. The former case gives a slightly better
fit at very low density, but is not a particularly good fit at high
density. This would require an additional scattering process to

(a)

(b)

Figure 4. The steady state velocity at 30 kV cm−1 as a function of
the (a) carrier density and (b) the average energy attained at this field.

be incorporated. The latter case, gives a very good fit at higher
density, but not so good at low density. However, Coulomb
scattering will improve this low density fit. As mentioned
above, these values lead to a room temperature mobility above
40 000 cm2 V−1 s−1 at room temperature in what is believed
to be intrinsic graphene. In figure 1(b), we plot the velocity
as a function of the electric field for these two cases, and a
density of 5 × 1012 cm−2. We see that only the latter set of
coupling constants give a good saturation, while the velocity is
higher for this set. This occurs as the stronger optical coupling
leads to a higher energy loss, with the resulting lower average
energy (and consequently a lower value of effective mass). Our
preference is to use this latter set of parameters, and we do not
consider the first set further.

In figure 2, we plot the steady state drift velocity as
a function of applied field for different carrier densities.
Remarkably, we find that the onset of saturated behavior occurs
at lower field, and the value of velocity is higher, with lower
carrier density. In fact, at low density, we even observe
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(a) (b)

(c)

Figure 5. The particle distribution along the field direction for three different values of the electric field: (a) 1 kV cm−1, (b) 15 kV cm−1,
(c) 30 kV cm−1. This is done for a carrier density of 5 × 1012 cm−2.

a negative differential conductance, in which the velocity
actually decreases with increasing electric field. Graphene has
a linear dispersion relationship around the Dirac point. So, its
energy increases linearly with increasing total momentum. But
the mass also increases linearly with the energy. Therefore, at
lower carrier density, the phonon scattering decreases, and the
mass also decreases, both of which lead to a higher velocity.
In the low density region, the average mass increases as the
energy is increasing, and this leads to the observation of
negative differential conductance. As we raise the density, the
scattering, average energy, and mass all increase, leading to
lower velocities for the carriers.

In figure 3(a), we plot the average energy attained by the
carriers as a function of electric field. This is plotted for the
same densities as shown in figure 2. In figure 3(b), we plot
the same data, but now the average energy is normalized to the
Fermi energy in the electron gas. Here, we note that the average
energy at low fields is given by 2EF/3, for the higher carrier
densities. In fact, this is the value expected for a degenerate
electron gas in graphene in equilibrium. At lower densities, this
value rises as the distribution is considerably less degenerate at
these low densities. At high fields, we note that the curves tend
to converge toward each other in figure 3(a).

In figures 4(a) and (b), we plot the steady state velocity
at 30 kV cm−1 as a function of the carrier density and the
average energy attained at this field. It may be seen that the
latter satisfies a power law (near quadratic) fit, which reveals
an inverse square relationship present between the velocity and
average energy. In fact, this is what expected from graphene.
To elaborate, we consider that at any value of the field, there
is an effective (chordal) mobility relating the velocity to this
field, as

v = μF = eτ

m∗ F. (5)

For graphene, as mentioned before, the effective mass
increases linearly with energy, while the relaxation time has
an inverse relation with energy through its connection to the
density of states. As a result, to first order, it may be expected
that the velocity will decrease with the square of the energy,
and this is very nearly the situation described by figure 4. In
figure 4(a), where we plot the velocity at 30 kV cm−1 as a
function of the density, we can see that drift velocity decreases
linearly with increasing density, consistent with the arguments
above.

In figure 5, we illustrate how the initial Fermi–Dirac
distribution is broadened and shifted in the high electric field.
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Figure 6. The velocity autocorrelation function for various values of
the electric field and for a carrier density of 5 × 1012 cm−2.

In figure 5, we plot the projection of the particle distribution
along the electric field direction as a function of momentum
for three different values of the electric field and for a carrier
density of 5 × 1012 cm−2. From these plots, it is clear to see
that there is a change in both the average energy (change in
the Fermi energy) and in the temperature (broadening of the
distribution) as the field is increased.

Finally, in figure 6, we plot the velocity autocorrelation
function for the ensemble, starting from the initial time t = 0,
for several values of the electric fields and a carrier density of
5 × 1012 cm−2. Here, this function is defined as

1

N〈v2(0)〉
N∑

i=1

vi (0)vi (t). (6)

The non-monotonic behavior of the autocorrelation function is
a clear sign of velocity overshoot [29], which occurs at almost
all densities and sets in at very low values of the electric field.
At higher fields, the curves begin to overlap, showing that
the relaxation times and duration of overshoot phenomena are
saturating at a common set of times.

In summary, anomalous velocity saturation that is
velocity saturation behavior different than observed in normal
semiconductors, is observed in intrinsic graphene at room
temperature when only phonon scatterings are considered.
The reason behind this anomaly lies in graphene’s unique
bandstructure which has a linear dispersion relation near the
Dirac point. The saturated velocities show a systematic
variation with both the average energy and the carrier
density. Here, we have only extended the electric field up to

30 kV cm−1, but one could go further. However, we have
considered only the simple Dirac band structure, and it is
known that distortions of the energy surface occur at higher
energies than we have gone here. To probe to higher electric
fields and higher carrier energies, it is likely that one will
have to incorporate the full band structure to account for these
deviations from the simple Dirac band form.
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